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What is Inverse Optimization (IO)?
Forward Optimization Problem
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s.t. Ax ≤ b
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Motivation

Routing Problem (i.e., Least Cost Path)

Objective Learn the arc cost

Production Planning Problem

Objective Estimate backorder cost

Customer Behavior

Objective Estimate customer utility function
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Contribution

Existing algorithms

Highlights Optimization formulations based on optimality conditions

Guarantee optimal solution

Limitation Algorithms are tailored to solve special cases of IO problems

*Chan et al. [2–4], Troutt et al.[6, 7], Aswani et al. [1],

Saez-Gallego and Morales [5]
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Contribution

Existing algorithms

Highlights Optimization formulations based on optimality conditions

Guarantee optimal solution

Limitation Algorithms are tailored to solve special cases of IO problems

*Chan et al. [2–4], Troutt et al.[6, 7], Aswani et al. [1],
Saez-Gallego and Morales [5]

Deep Inverse Optimization

Highlights First deep-learning based approach

Learn parameters through backpropogation

Generally applicable to different IO problems

Limitation Doesn’t guarantee optimal solution
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Methodology

(IO): Find a Cost Vector Consistent With Target

Target
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Methodology

Solve FOP using Interior-Point Method (IPM)
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∆c

Yingcong Tan, Andrew Delong, Daria Terekhov Deep Inverse Optimization 12/35



Methodology

Observe Discrepancy and Compute Gradients
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Methodology

Termination

Target

c

x∗
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Methodology

Deep Inverse Optimization

Unroll the IPMUnroll a Deep RNN

x (0) = features

x (1) = RNN(x (0),weights)

x (2) = RNN(x (1),weights)

x (n) = RNN(x (n−1),weights)

minweights Loss(Target, x (n))
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Backpropogation
∂ Loss

∂ weights
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Methodology

Deep Inverse Optimization

Unroll the IPM

c,A, b = DefineLP(features,weights)

x (0) = FindFeasible(c,A, b)

x (1) = Newton(x (0), c,A, b)

x (2) = Newton(x (1), c,A, b)

x (n) = Newton(x (n−1), c,A, b)D
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minweights Loss(Target, x (n))
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Experiments on Three Learning Tasks

Task 1 Single-point non-parametric LP

Goal Learn cost vector

– Closed-form solution proposed by Chan et al. [2, 4]
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Experiments on Three Learning Tasks

Task 1 Single-point non-parametric LP

Goal Learn cost vector

– Closed-form solution proposed by Chan et al. [2, 4]

Task 2 Single-point non-parametric LP

Goal Learn cost vector and constraints jointly

– Maximum likelihood estimation apprach proposed by
Troutt et al. [6]

Task 3 Multi-point parametric LP, i.e., c ,A, b = f (features,weights)

Goal Learn weights

– Not addressed in literature
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Experiment on Task 1

Goal Learn cost vector consistent with a single observed target

X ∗

Target
c

Yingcong Tan, Andrew Delong, Daria Terekhov Deep Inverse Optimization 22/35



Experiment on Task 1

Goal Learn cost vector consistent with a single observed target

X ∗

Target

X ∗
c

c

Test on 300 random LP instances
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Experiment on Task 1

N = 10 Variables

M = 20 Constraints

Before 
Learning

After 
Learning

X ∗

Target

X ∗
c

c
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Squared Error (Learned vs Target)
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Experiment on Task 2

Goal Learn cost vector and constraints consistent with a single
observed target

X

Target

c
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Experiment on Task 3

Goal Learn weights such that decisions are consistent with observed
targets across multiple conditions

TARGET

DISCREPANCY
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Summary

General-purpose framework for solving IO problems

Solves parametric or non-parametric problems

Learns all parameters individually or jointly

Easily extends to non-linear problems

Deep-Inv-Opt package is now available on
https://github.com/tankconcordia/deep inv opt
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https://github.com/tankconcordia/deep_inv_opt


Thank you !
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